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STUDYING THE TEMPERATURE FIELD IN THE RECORDING AND REPRODUCTION
OF INFORMATION BY MEANS OF FOCUSED RADIATION

Yu. M. Kolyano, A, V. Irlin, B. V., Protsyuk, UDC 536.12:539.377
B. A. Drapkin, and V. G. Tsukanov

The functions of an instantaneous spot source of heat acting on the boundary
of layer separation have been constructed for a two-layer plate. The tempera-
ture field generated by a moving normally distributed source of radiation is
studied in the recording and reproduction of information.

The most important component in the development of optical disk recording devices, as well

as in the reproduction and storage of information is the study of the process involved in
the propagation of heat generated in an active layer applied to a substrate transparent to
optical radiation and focused with brief pulsed radiation (the thickness of the substrate
considerable exceeds the thickness of the active layer). Under real conditions, since the
three-dimensional distribution of radiation intensity is described by a complex law [1], it
is a good idea to make it as simple as possible. In this connection, of practical interest
is an examination of the problem pertaining to the heating of component parts in three-dimen-
sional formulation from the standpoint of the heat sources which are effective at the point
at which the layers are joined.

The solution of these problems for a two-layer plate can be found by means of the func-
tions G (r, Tos @y Qo s 2, 1), satisfying the following equation, with discontinuous and sin-
gular coefficients:

A \OG 1 1 1 a0G
— 5 =¥ 2 Y | e ——— _— il 1
st (1= ) de—a[ o (pmg) sema [5h 4 @
1 8C=r0) §(p—qbz—2)8() =0

Ay ry

_.l_
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Ukrainian SSR, L'vov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 57, No. 6, pp.
983-990, December, 1989. Original article submitted July 19, 1988.
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(2)

and the boundary conditions

G| _o 6l =o G‘ —o0, G\ 0,
0z 2=0 2=z, row =0
where
a H
3 + 622

A= arz ““737 p acpz
—G/af j=1,

Let us note that Eq. (1) is equivalent to the heat-conduction equations AGy
%z> (85, /82) =

2) for each layer, as well as to the conditions of contact G; = G,, A,(8G,/
—[8(r — ry)/ty18(P — ®)6(z—2z,)8(t) for z = z,, G =G, + (G, = G )S(z - 2z)
Applying the Fourier, Hankel, and Laplace transforms with respect to the variables ¢ ,
r, T to (1) and (2), respectively, we obtain the following ordinary differential equation
(3)

2 G —
dﬂ—1ﬁ+®@—®3@~4m0~

by \ 4G
/'—1__1) a6 6(2“‘21):““}1—14(7], v)8(z—2z)

_\9"2 dz 2=2,—0
and the boundary conditions
dG = (4)
dz z=0’—0’ G,z.-—.-z,:O
Here
’ cosv @, wvith w =0, 2, 4, ...,
Am, vy =J,(qr
. ) (70) {sinv%with v=1, 3, 5, ..,
s .
=/ S =12
Following [2], we represent the solution of problem (3), (4) in the form
G = m{sh 8y (23— 2y) {chelz+(chalzlchaz(z—~zl) + =2 Lx (5)
Qe, h, gy A

X she;z;she, (z—2;) —chez) S (z— 2y } —Qshey(z—2) S(z— zl)}

Q =che,z,che, (z,—2,) + =% —2:— she, z; she, (2, — 2;).
& Ay

Turning in (5) from the images to originals, using the theory of expansion for the integral
Laplace transform, we will write the solution of problem (1), (2) in the form
(6)

1 , 2,
G=— = fnJ (nds) 2 —“’—(ﬂ—z—%)— exp (—pn7) dn,

/\2 n=1

where
dy = r2 - rg — 2rry cos (@ — @y);
bn, 2, p) = —2—1 sin 8, (25 — 2y) [cos 8,2 -+ (cos 8,2, o5 8, (2 — 2,) —
2
8 A .
6 m sin 2, sin 8, (z — z;) —cos 8,2) S (2 — zl):] ;
2

A, sin 8, (2, — 2;) sin 8,2y + A, sin 8, (z, — 2,) cos 8,2, +

D, w)=
- Agcos 8, (2, — 24)sind, 2y ;
1 & a, 91 8 M o,
A, =— L _.._1__'..>’ :*l(_z_}-__(z_..z);
162x2< a 62 % 8 \hy g o
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A 5? a, p? 5
Ay=2+ 5= (2—2) §; = ——1P (j=1,2);
?"2 6252 aj

Mp are the roots of the equation cosd;z; cosd,(z, — z;) — (8;/8,)(A;/X,) sind,z; sind,(z,—
z,) = 0.

A solution in the form (6) can be used effectively for numerical calculations, given suf-
ficiently large values for the time. Let us dwell in some detail on obtaining a solution -
for boundary-value problem (1), (2), such as is convenient from the standpoint of realiza-

tion with small time values.

With large values of s for @3 < @y, the expression for G can be transformed as follows:

L fexp (— &y (2 —2)) (1 + exp (— 26,2)) S (2, — 2) + 7)

+exp(— g 2~ 2) (1 + exp(— 26,2) S — 2] T,
n=0

v o ()= ) O exp(— 22

_+/a A @ A
Q l/i+fi+( &3] exp (202

where

where |u]| < 1.

Since

e S na a
=V l/ +s+n21a1( 2_1) (8)

and 8, < 4 for e,/e; the following expansion is valid:

—_— \ 2
82 . al 1 1 tn?.al (aZ 1) 1 (a2 1 2( nZal ) + )
=2 4 R Wkt S ot —— 2 —_— e b 9
& az( + 2 s4+1va; \a / 8 \q ) 3+n2a1 (9)
Limiting ourselves in (9) to two terms, i.e., assuming that
& /I"_ 7 2
LJe 2_1.(1—1—-1——————" & (92-._1)) (10)
& as 2 s+1%a

and substituting (10) into (7), keeping in mind in this case only the first two terms of the
series in (7), since the latter contains terms of a higher order of smallness, and utilizing
the representations

1 - 1 o/ B\
% B, péo( B, ) exp (— 2e,2,p),
1 B, \r—1
a w2 (ar) e mae—n,
we obtain
An, v) [ | R— ( Bl"")p
G~ exp (— 2¢,2 (11)
Aty B, ;ﬁ B, p( 121P) +
I 1 l/‘?z—l— a, na > B, 7!
2 1— 1 Ly
wEV ( al) s+ e ,,}::1’)(32) *
X exp (— 2,2, (p— 1»] [exp (— & (2 — 2)) (1 + exp (— 26,2)) S (2, — 2) -+
4 exp(—ey(z—2,)) (1 4 exp (—28,2))) S (z— 2))],
where
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r .
7\1 a }\,1 / al

=2 3/ . /
O

Making the transition in (11) from images to the originals, using the theorem of displace-
ment and convolution of the Laplace transform, as well as the inversion formulas for the Han-
kel and Fourier transforms, we have

3
on[ LD (BN Y (L) e (R (a2
4 B Va, dav ) A 7=\ B da,t

)(B'c) 2exp( db >><

+—(hy Wz)- ( s
X(l—— 4 )F (T, Z)]S(zl_‘z)‘{"{ ﬂlz (Bahg)™ X

: (—4dy) o [ _Bi\ %
X j ——*—————exp B 2 (E) €xp ( 4at:; ) du +

0 gVE(T_u)Z l=1 p==0

Pio a; 1 exp(—d, d3
+—-—i%—~ l/a—‘;(a1—~a2) B 55 p( :)5 x(l—-T;~> Rl(u)du]S(z—zl).

g (x—u)
Here
[311‘ =(— 1)i
Bar =32, —2, Py =382, 42, Fi(r, 2) =
4 ©
- By V™ tente [ Gan B
=2V7 s‘p( 1) 1erfc(—3p-—__=“-—),
; ;:i Bz 2 Val'::
Ry (w) —-21/&2 Zm p/ B ) " feric (—ﬂp—_;_—_) ,
I=1 p=1 \ B2 2Va1u
ey d3 (2—2z?
= g, — L d, =
g 31‘+(a1 aZ)u dl 4g + 4a1(1,____u) 3
= 2pz,, Kop = 2(p+ 1}z, tsp =2{(p— 1)z, Cyp = G1p.
If we limit ourselves in (9) only to the first term, i.e., if we assume e,/e; = 1/aﬂa2 s
then we obtain the following expression for Gj (3 =1, 2):
3
——2_ / 2 2 it 2
Gy~ SR ) exp (— do ) > (——~Bl )pexp (—— Czptby)r ) . (13)
4 B Va 4a,v | # =\ B, 4a,t
If in the expressions for £,, €, in (7), following (3], we assume that n = 0, then
Va, 1 8(r—rp) (22,0-FBu)? (14)
G~ — = L) Lanprbuly
7 MB, Vi To (®— ) 1221 g ( ) ( da,t

Formulas (14), (13), and (12) are successive approximations for the determination of
the functions of an instantaneous spot source of heat. Let us take note of the fact trat
from (13) we can obtain a precise expression for the function G for a uniform half-space:

3

-7 2 2 2
1 (an) °? do ) o ( B
G=——"——=—exXp|— exp | — ) .
&8 rVa P 4av g‘l dat
On the basis of the constructed functions G (r, r,, ¥, §o , z, 7) we will write out the
expression of the temperature field in the two-layer plate, said field generated by the ac-

tion of heat sources of density W(r,¢ , 1)8 (z — z,), where W (r, ¢, 1) is some arbitrary
function of the coordinates r, ¢ and of time T:
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2n

T
t(r7 P, 2, 1): SI 5 f rOW(rO’ Dgs U)G(f, o @ Pp 2, T-—-U)d%drodv. )
000

In the case of a normally distributed pulse-radiation heat source moving about a circle at
a constant angular velocity w, the expression for the temperature in the active layer as-

sumes the form
on

roq () exp {—krs 4 > —2re cos (g —OON} G,y (1, 7oy @, @y 2, T—0)dgydrydy, (15
| (15)

0

k14
Mn%zﬂ:j
0

Sty 8

m—1
g(v) = qo 2 IS4+ (v—bp) =S4 (53— by — 1)},

n=0

b, = n('r1 + Tz), and ¢ is the distance from the coordinate origin to the center of the spot.
Substituting (12) into (15) and carrying out the integration, we write

Hhr, @ 2 ©)=ty(n @ 2 1)+ h(r O 2 ) (16)
where
VE‘ q m—1 T~bp
¢ 7, 1 4 T 2"_—]:“-“—'2‘—‘:' S ~—b (3] sy Wy & -
w2 1) = e n;o[ (=t [0 02 e
T—b,—1;
f (17)

—~Si(t—by—T) 5 8.(r, o 2, u)du],
[

1 m—1
t rs @, 2, T) = T —_ —
w88 0T g Ty ) Z St x
b Tmbyy—1,
X | 8ulr, 9, 2, u)du—S8, (v—b, —1,) f 6,(r, @, 2, u)du} , (18)
0 b

exp (-—— ka? )
“ ) gy (B (22,p + By
(S) (r) o, 2, u) = ———-—-———:-__—1—-—-— (__1_.) exp (___ 1P (51 ) ,
' w Vu l;l.pzzo B, dau
— b2t 2
) (= )
uu ‘

a2 = r% - ¢ — 2rc cos (¢ — o (v —u)), 4 = 1 + dkayu.

O, (7, ip, z, u)-—-exp(—- 5
LAt

thy

Let us examine certain special cases in the solution of the heat-conduction problem.
If we use (13) with j = 1, in order to determine the temperature field in the active layer,
we find that t,(r, 9, 2z, 1) = t,,(r, ¢, 2z, 7). Substituting expression (14) into (15) with
j =1, we find that

L(r, 9, 2, r)zl/-‘—f_l- D mﬁ [S (t—b )1?,,@ (r, @ 2 ) dg —
X 32 xgvn =40 + " '0 8 ’ ’ !
T—bp—Ty

— 8 (v—b,— 1) f O, (r, m,z,u)du],
b

where
exp (— kd?) o ( (22,p + B )
B, (r, @, 2, ) = —e—t exp | ———A 2}
s Vu ,;l ‘ZO 4a,u
With 4k @, t « 1 the same result follows out of (16).

For a uniform half-space the exact solution of the heat-~conduction problem is presented
in the form

V&- m—1 T—bp T~bp—Ts
tr, 9, 2, )= o T/%“_E [S+(1:——bn) j O, @ 2 Wde —S,(t1—by—m) § e, o 2 u)du],
n==0 o
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pra— 25T MEX (75 M95m ¢

) ’ 1
Fig. 1 Fig. 2

Fig. 1. The relationship between t/q,(m?:K'W™!) and t(107% sec) for various val-
ues of ®: 1) ® =03 2) 9= wty; 3) @ = w(ty + 7,); 4) ¢ =w(2t, + 1,); 5)9 =
20(t, + 1,)5 6) @= w(3t, + 271,).

Fig. 2. The relationship betwwen t/q,(m?:K:W"!) and ¢ (rad) at various instants
of time T: 1) t = 0.25-107% sec; 2) © = 0.31-107%; 3) v = 0.35-107%; 4) 1 =
0.414107%; 5) t = 0.45-107° sec.

where

ex ~_,_k_‘iz__)
P( 1 + 4kau | Zexp( B )
(1 + 4kau) Viu

In the case of a nonmoving heat source

O, 9 2 )=

L', 2, 1) =t (7', 2, 1)+t (), 2, )

where - x
' _ Va, _ 90 S .
balr's & W) = S z{s+<r~bn) 3 "0, (', 2 u)du
T—bp—Ts
—Si(v—bn— 1) S‘ 8,(r, 2, u)du];
0
1 —~by,
ta(r'y 2, ©) = = (a, — 0 S (z—b, 0,(r', z, u)du—
w2 0= o o »gﬂ[u )\ (r
T—bp—T1

—Si(t—bn—m) [ 6(' 2 wdu;

o

2 3
, B, )p ( 22,p + Br)? )
r', 2, u) = Ty e —] ex S
1 ) wVu ,;, p;,,( B, P 4a,u
h 7 — "___ 2
0,(r', 2 1) =exp(~ il W’l et SR ) A, 2
Uy ) wiu uiy

r' is reckoned from the center of heating spot. Where 4k ;1 < 1, to determine t,{z', z,

1), we have the simple formula:

2q0 Ve,

oo

a1 o 3 | — 2z,p + B
; 2 Z {S+(T——bn) VT—‘-bn ieric 2—_‘/—511/—1:_:_3—; —_—

e 2z
— S84 (v —bp— 1) VT— b, — 1, derfc 21/(1_111/’71_";?;_;_:__11 J
Based on (16) we calculated the temperature field at the point at which the layers were
joined, with the following values for the parameters: 2z, = 0.12:10"® m, 7, = 0.2-107% sec,
1, = 0.5:1077 sec, w = 507 rad/sec, ¢ = 0.045 m, A, = 8.37 W/ (m'K), A,=0.2 W/ (mK), &, =
0.3:107° m?/sec, a, = 0.7:1077 m?/sec, k = 0.307787:10%% m~2, r = ¢. The results of these
calculations can be found in Figs. 1 and 2.

L'y 2, )=
I=! p==0
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We can see from these figures that the initial pulse has little effect on the change
in temperature at those points through which the center of the heating spot passes during
the second pulse, whereas the second pulse has virtually no influence on the change in temp-
erature at those points through which the spot center passes during the third pulse. It
thus follows from the foregoing that in order to study the process of heat propagation it
is sufficient to limit ourselves to several pulses.

The maximum temperature is achieved at the end of the pulse at those points through
which the heating spot center passes within (0.14-0.16):10"° sec from the instant of pulse

onset.

Let us note that for the calculations that we have carried out here the absolute mag-
nitude of t,,(r, o , z,, T) amounts to no more than 107 of the total t,{(r, ¢, z,, T).
Should it become necessary to refine the temperature values, we must take into considera-
tion a larger number of terms in expansion (9) and in the series in (7).

NOTATION

t, temperature in the plate; t,, temperature in active layer; r, ¢, z, cylindrical co-
ordinates; T, time; z,, thickness of two-layer plate; z,, thickness of active layer; (ro,
% , z,), effective point of instantaneous heat source at initial instant of time; A, and
@ , A, and @ coefficients of thermal conductivity and thermal diffusivity for the active
layer and the substrate, respectively; X and 2, coefficients of thermal conductivity and
thermal diffusivity in the uniform half-space; k, concentration factor; q,, surface density
of heat-source power; T1,, pulse duration; t,, pause duration; m, number of pulses and paus-
es; s, Laplace transform parameter; n, Hankel transform parameter; §(x), Dirac & function;
S(z), Heaviside unit function; S,6(x), unit asymmetric function; Jy(x), Bessel function of
the first kind of the v-th order; ierfc(x), repeated integral of additional error function.
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